Sulfur Compounds, Part 207^[+]

The Formation of the Sulfur Halides SX_4 from SX_2 and X_2 : Reaction Enthalpies, Transition States, and Activation Energies for X = F and Cl

Yana Drozdova,^[a] Ralf Steudel,^{*[a]} Wolfram Koch,^[b] Karol Miaskiewicz,^[c] and Igor A. Topol^[c]

Dedicated to Joan and Robert R. Holmes

Abstract: High-level ab initio MO calculations by different methods demonstrate that the reaction of SF2 with F₂ to form SF₄ is strongly exothermic and exergonic [CCSD(T)/6- $311+G(2df)//MP2/6-311+G^*: \Delta H_{298}^\circ =$ $-445 \text{ kJ mol}^{-1}, \ \Delta G_{298}^{\circ} = -398 \text{ kJ mol}^{-1}$] and proceeds via a very weakly bonded intermediate 2 with C_s symmetry. The structure of 2 corresponds to a donoracceptor complex $F_2S \rightarrow F_2$ with a considerable transfer of charge (0.69e). The transition state (TS1) between 2 and SF₄ has a similar structure to **2** but with C_1 symmetry. The energy of the adduct and of TS1 is almost the same as the

combined energy of the separate molecules SF₂ and F₂. Therefore, the overall activation energy for the reaction of SF₂ with F₂ to form SF₄ is practically negligible (6 kJ mol⁻¹ at 298 K). The analogous reaction of SCl₂ with Cl₂ to form the hypothetical molecule SCl₄ is endothermic and endergonic (ΔH_{298}° = +32 kJ mol⁻¹, ΔG_{298}° = +74 kJ mol⁻¹). The ground-state geometry of SCl₄ has C_{2v} symmetry at the MP2/6-311+G*

Keywords: ab initio calculations • reaction mechanisms • sulfuranes • sulfur halides • transition states

level and the coordination geometry at sulfur is pseudo-trigonal-bipyramidal. The transition state (TS2) of this reaction is ionic ([SCl₃⁺]Cl⁻) and has C_1 symmetry. The activation energy at 0 K for the chlorination of SCl₂ amounts to 203 kJ mol⁻¹ at the CCSD(T)/6-311+G(2df) level; it is 43 kJ mol⁻¹ lower than the experimental bond dissociation energy of Cl₂. The proposed formation of the analogous tetrathiasulfuranes S(SR)₄ from (RS)₂S and RSSR is discussed in connection with the various interconversion reactions of polysulfur compounds.

Introduction

The sulfur fluorides SF_4 and SF_6 are produced industrially by high- (SF_6) or low-temperature (SF_4) reaction of elemental sulfur with fluorine.^[1] For many years their so-called hypervalent or hypercoordinate molecules have also been of

[a]	Prof. Dr. R. Steudel, Dr. Y. Drozdova
	Institut für Anorganische und Analytische Chemie, Sekr. C2
	Technische Universität Berlin, D-10623 Berlin (Germany)
	Fax:(+49)3031426519
	E-mail: steudel@schwefel.chem.tu-berlin.de
[b]	Prof. Dr. W. Koch
	Gesellschaft Deutscher Chemiker, Postfach 900440

- Gesellschaft Deutscher Chemiker, Postfach 900440 D-60444 Frankfurt (Germany)
- [c] Dr. K. Miaskiewicz, Dr. I. A. Topol SAIC/National Cancer Institute-Frederick Cancer Research and Development Center Frederick, MD-21702 (USA)
- [+] Part 206: R. Steudel, A. Albertsen in *Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers* (Ed.: A. Steinbüchel), Wiley-VCH, Weinheim, **1999**, p. 17.

interest to theoretical chemists: there seem to be more than eight valence electrons at the central S atoms and therefore a violation of the octet rule has been suspected. However, it is now generally accepted that the covalent bonds in these species can be understood on the basis of multi-center interactions of the 3s and 3p atomic orbitals of sulfur with the 2p orbitals of the F atoms while the high-energy 3d valence orbitals of sulfur play a minor role and, to a first approximation, can be neglected. However, d and even f functions serve as polarization functions in the basis sets used.^[2] To obtain the correct thermodynamic data such polarization functions are necessary not only for the S atom but also for the F atoms in compounds of the SF_n type, and the bonding in SF_2 does not differ significantly from that in SF₄ or SF₆.^[3] Of the 36 valence electrons in the mentioned atomic orbitals of SF_6 , only eight occupy bonding orbitals while the remaining 24 reside in more or less nonbonding molecular orbitals which are located on the F atoms.^[4] With SF₄ the situation is analogous.

The structures and chemical properties of SF_4 and SF_6 are well known but their formation from sulfur and fluorine has

never been studied mechanistically. Elemental sulfur and fluorine react violently to give a gaseous mixture of SF_6 , S_2F_{10} , and SF_4 , with the unstable SF_2 as a likely intermediate.^[5] Therefore the formation of SF_4 and SF_6 may be explained by a stepwise addition of F_2 to the primary product, SF_2 , but the formation of S_2F_{10} shows that under certain conditions SF_5 radicals are likely intermediates too.

Sulfur also reacts exothermically with elemental chlorine but much more slowly and less violently than with fluorine. The final product of highest chlorine content at 25 °C is SCl₂, which is also produced industrially.^[6] Only at temperatures below -30 °C can SCl₄ be prepared (from SCl₂ and Cl₂). This colorless solid is composed of SCl₃⁺ cations and bridging Cl⁻ anions;^[7] when warmed to 25 °C it decomposes to SCl₂ and Cl₂. Consequently, SCl₄ has never been observed in the vapor phase, nor has the hypothetical SCl₆.

We have studied theoretically the reaction of SF₂ with F₂ to form SF₄ and the analogous reaction of SCl₂ with Cl₂ to give SCl₄ in order to determine for the first time the reaction mechanisms, as well as the activation energies and the structures of the related transition states. Other aims of this work were to find out why SCl₄ is so much less stable than SF₄ and whether related sulfuranes such as S(SR)₄ have a chance of existing or of playing a role as intermediates as has been proposed.^[8]

The simplest model reaction for the formation of a SX_4 -type sulfurane is the hypothetical hydrogenation of H_2S to SH_4 [Eq. (1)]. This reaction was first studied theoretically by

$$H_2S + H_2 \longrightarrow H_4S$$
 (1)

Schaefer and co-workers,^[9] who assumed a symmetrical addition of the dihydrogen molecule to the S atom of H₂S under C_{2v} symmetry, that is, with concerted formation of the two new S – H bonds. Such a reaction is allowed by the rules of orbital symmetry conservation[Eq. (2)].

At the configuration interaction level of theory using a triple-zeta plus polarization basis set (CI/TZ+P) a reaction enthalpy of 312 kJ mol⁻¹ was calculated for reaction (2). An activation energy of approximately 178 kJ mol⁻¹ was obtained for the back reaction, which means that the forward reaction requires an activation energy of 490 kJ mol⁻¹. This result seemed to indicate that H₄S, once it had been formed in a suitable reaction, might be stable with respect to a unimolecular decomposition at low temperatures. The structure of H_4S was found to have C_{4v} symmetry although most sulfuranes of the SX₄ type are of lower symmetry $(C_{2y};$ pseudo-trigonal-bipyramidal). Ewig and Van Wazer^[10] confirmed that H_4S has C_{4v} symmetry and reported a reaction enthalpy of 331 kJ mol⁻¹ at 0 K at the MP4/6-311G(2d,2p) level of theory. Moc et al.^[11] calculated the activation energy of the forward reaction (1) to be 541 kJ mol⁻¹ at the MP4/6-31++G(d,p)//MP2/6-31++G(d,p)+ZPE level of theory. This energy is much higher than the bond energy (D_e) of H₂ at 0 K (457 kJ mol⁻¹). However, the same authors showed that there is an alternative reaction channel of much lower activation energy characterized by stepwise, rather than simultaneous, formation of the two new S-H bonds. The corresponding transition state **1** has C_1 symmetry.

The activation energy for this asymmetric addition of H₂ to H₂S (425 kJ mol⁻¹) is only slightly smaller than the bond energy of H₂. The overall reaction energy $\Delta E(1)$ was calculated to be 359 kJ mol⁻¹ at 0 K and the unusual C_{4v} symmetry of H₄S was once more confirmed. A particularly interesting feature of the asymmetric transition state is the strong polarization of the H₂ unit originating from the incoming H₂ molecule: the outermost atom is strongly negative while the other H atom is slightly positively charged. Therefore this structure can be described approximately as an ion-pair [H₃S⁺]H⁻.

The structures and the thermochemistry of the various sulfur fluorides SF_n have been investigated many times. From experimental gas-phase data^[12] the thermodynamic functions for the formation of SF₄ from SF₂ according to Equation (3) can be calculated to be $\Delta H_{298}^{\circ} = -466.5$ kJ mol⁻¹ and $\Delta G_{298}^{\circ} = -418.7$ kJ mol⁻¹.

$$SF_2 + F_2 \longrightarrow SF_4$$
 (3)

The reaction enthalpy has been reproduced accurately by high-level ab initio MO calculations according to the G2, G2(MP2), and CCSD(T) methods.^[13] However, none of those who have yet investigated the reaction mechanism included the activation energy of reaction (3). Gaseous SF₄ has C_{2v} (pseudo-trigonal-bipyramidal) symmetry with the two axial S–F bonds (164.6 pm) considerably longer than the equatorial bonds (154.5 pm).^[14] At 298 K rapid pseudo-rotation (intramolecular ligand exchange) occurs. The more symmetrical structures of C_{4v} and D_{4d} symmetry are transition states (firstorder saddle points) for the pseudo-rotation and enantiomerization, respectively, of SF₄.^[15]

The chlorination of gaseous SCl₂ to form the hypothetical molecule SCl₄ [Eq. (4)] has been investigated theoretically using aproximate density functional theory.^[16] The reaction was found to be exothermic and the symmetry of the ground-state geometry of SCl₄ was claimed to be T_d . It will be shown below that these results are in error.

$$SCl_2 + Cl_2 \longrightarrow SCl_4$$
 (4)

Computational Methods

All calculations were performed with the GAUSSIAN 94 program package,^[17] installed on CRAY and SGI Origin 2000 computers. The molecular structures of all species were fully optimized at the MP2/6-311+G* level of theory which includes the corrections for valence electron correlation through second-order Møller–Plesset pertubation theory.^[18] This level was also used to calculate the natural atomic charges,^[19] Mulliken atomic charges, and dipole moments, as well as the vibrational wavenumbers, zeropoint and thermal energies, entropies, and heat capacities which are given in Tables 2 and 4 below. Improved relative energies were obtained by single-point calculations at the CCSD(T)/6-311+G(2df) level for all structures.^[20] The transition states obtained were characterized by one imaginary wavenumber whereas all the vibrational wavenumbers of the structures of minimal energy were real. The intrinsic reaction coordinates were calculated at the HF/3-21+G* level.^[21]

To obtain additional data for the reaction energies ΔU°_{298} , enthalpies ΔH°_{298} , and free enthalpies ΔG°_{298} for reactions (3) and (4), G2(MP2)^[22] and CBS-4^[23] calculations were carried out for the stable structures since these methods had been shown previously to provide accurate thermodynamic data for certain sulfur-containing molecules. The geometries are optimized in these procedures at the MP2/6-31G* (G2/MP2) and HF/3-21G* (CBS-4) levels of theory, respectively.

For the adduct $2~(SF_2 \rightarrow F_2)$ and the related transition state TS1 a basis set superposition error (BSSE) correction was carried out according to the counterpoise procedure.^[24]

Results

For the first time we have investigated the energy profile for the reactions of the bent molecules SX_2 (X = F or Cl) with the corresponding dihalogen molecules X_2 to give SX_4 .

Sulfur fluorides: The calculated geometry of SF₂ (C_{2v} symmetry; S–F 162.8 pm, F-S-F 98.6°) is in reasonable agreement with the experimental equilibrium data (S–F 158.7 pm, F-S-F 98.0°),^[25] even though the computed S–F distances are overestimates of the experimental ones by 4.1 pm (2.6%). Reasonable agreement is again observed between the geometric parameters of SF₄ and the experimental values (Table 1).^[14]

Table 1. Molecular geometry of SF₄ (distances in pm, angles in °). Calculated values at the MP2/6-311 + G* level of theory; experimental data from ref. [14].

	SF _{ax}	SF_{eq}	F _{ax} SF _{ax}	$F_{eq}SF_{eq}$	$F_{ax}SF_{eq}$
calc.	169.0	157.9	172.4	101.9	87.6
exp.	164.6	154.5	173.1	101.6	

The calculated energies and entropies of all the related species are presented in Table 2. The reaction enthalpies ΔH_{298}° and the free reaction enthalpies ΔG_{298}° of reaction (3) obtained from the data in Table 2 by the three methods applied in this work are listed in Table 3.

The CBS-4 and G2(MP2) results are more negative by $-12 \text{ kJ} \text{ mol}^{-1}$ than the experimental values in Table 3, and the

Table 3. Reaction enthalpies ΔH_{298}° and free reaction enthalpies ΔG_{298}° of reaction (3) obtained from the data in Table 2.

	ΔH_{298}° [kJ mol ⁻¹]	$\Delta G^{^{\mathrm{o}}}_{298} [\mathrm{kJ}\mathrm{mol}^{-1}]$
CBS-4:	- 476	- 428
G2(MP2):	-474	-427
CCSD(T)/6-311+G(2df)	- 445	- 398
experimental ^[a]	- 466.5	-418.7

[a] Ref. 12.

CCSD(T) data deviate by $+22 \text{ kJ mol}^{-1}$ from the experimental results.

The search for the transition state of reaction (2) was difficult because the potential energy hypersurface is clearly rather flat at the beginning of the reaction between SF_2 and F_2 ; before the energy drops sharply upon formation of SF_4 . This situation is not unusual for a strongly exothermic reaction. It was found that SF_2 and F_2 first react to form a very weakly bonded adduct **2** [Eq. (5)], which is then transformed via the transition state **TS1** into the ground state of SF_4 .

$$SF_2 + F_2 \longrightarrow F_2 S \rightarrow F_2 (2)$$
 (5)

The structures of **2** and **TS1** are shown in Figure 1. The adduct was found to be by only -14 kJ mol^{-1} more stable than the separate molecules, SF₂ + F₂, at 298 K. Due to the negative reaction entropy, of this adduct formation, the Gibbs free energy ΔG_{298}° of reaction (5) is +22 kJ mol⁻¹. The energy of the transition state **TS1** is just 7 kJ mol⁻¹ above that of **2** at 298 K. However, when the BSSE corrections were

Figure 1. Structures of the adduct **2** (symmetry C_s) and of the transition state **TS1** for the reaction of SF₂ with F₂ (internuclear distances in pm).

Table 2. Absolute energies (hartree) of SF_2 , F_2 , SF_4 , 2 and TS1 calculated by various methods, and zero-point energies (ZPE), thermal energies (TE), entropies and heat capacities based on the vibrational wavenumbers calculated at the MP2/6-311 + G* level.

	SF_2	F_2	SF_4	Adduct 2	TS1
G2(MP2) (0 K)	- 597.178702	- 199.317798	- 796.675056		
CBS-4 (0 K)	-597.219397	-199.353057	-796.751712		
CCSD(T)/6 - 311 + G(2df)	-597.128795	-199.282009	- 796.583145	-796.418680	- 796.415026
ZPE [kJ mol ⁻¹]	11.5	5.4	29.1	23.5	22.1
ZPE + TE at 298 K [kJ mol ⁻¹]	20.5	11.7	41.9	39.5	36.4
S_{298}° [Jmol ⁻¹ K ⁻¹)	258.8	202.7	303.6	333.7	320.7
$C_p \left[J \operatorname{mol}^{-1} \mathrm{K}^{-1} \right]$	37.2	22.9	69.2	76.4	69.2

1938 -

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0947-6539/99/0506-1938 \$ 17.50+.50/0 Chem. Eur. J. 1999, 5, No. 6

1936-1943

applied to the energies of **2** and **TS1** the energy of **2** was increased by 13 kJ mol⁻¹, resulting in an energy difference of only -1 kJ mol⁻¹ from the starting materials SF₂ + F₂. The BSSE correction raised the energy of **TS1** by 12 kJ mol⁻¹ resulting in an overall activation barrier (based on SF₂ + F₂) of only 6 kJ mol⁻¹. This final energy profile is depicted in Figure 2.

Figure 2. Energy diagram for the reaction of SF_2 with F_2 to form SF_4 via the adduct **2** and the transition state **TS1** (relative energies including the BSSE correction in kJ mol⁻¹ at 298 K).

The structures and the natural atomic charges of the adduct **2** and of the transition state **TS1** are very similar, as are the dipole moments (**2**, 8.08 D; **TS1**, 8.03 D). However, whereas **2** has C_s symmetry the transition state is asymmetric (C_1). The SF₂ unit of **2** resulting from the former SF₂ molecule is characterized by slightly shorter S–F bonds (157.8 pm) than were calculated for free SF₂ (162.8 pm). The natural atomic charges of **2** (S1, +1.63; F2, -0.20; F3, F4, -0.47; F5, -0.49) indicate that approximately 0.7 electron is transferred from the donor SF₂ to the acceptor F₂.

Since the axis of the F_2 unit is almost perpendicular to the plane of the SF₂ unit, it seems reasonable to assume that electron density from the 3 p lone pair on sulfur is transferred into the antibonding σ_u orbital (LUMO) of the F_2 molecule. Consequently, the F–F bond (182.2 pm) is much longer than that calculated for the free F_2 molecule (141.6 pm) at the same level of theory. The two torsion angles F-F-S-F are $\pm 50.0^\circ$; that is, F5 is bent towards F3 and F4. Therefore the adduct may be considered as a donor–acceptor complex $F_2S \rightarrow F_2$.

As in the case of **2**, the natural atomic charge on the bridging F atom of the transition state **TS1** is the smallest in the molecule (-0.19), while the outermost F atom carries a charge of -0.48. The almost equivalent atoms F3 and F4 are negative by -0.47 units. Consequently, the S atom of **TS1** has a higher positive charge (+1.62) than the S atom of SF₂ (+1.04). In SF₄, however, the S atom is even more positively charged (+2.16). These data as well as the geometric parameters show that the structure of **TS1** can also be explained as resulting from a nucleophilic attack of the S atom of SF₂ (using its nonbonding 3p lone pair) on the F₂ molecule (using its antibonding σ_u MO). Consequently, the F-F distance of **TS1** (181.5 pm) is also greater than in the free F₂ molecule. The angle F-F-S is 166.9° and the axis F2-S is

almost perpendicular to the plane of the former SF₂ molecule. The S–F distances of this former SF₂ unit (157.8 and 159.3 pm) are much shorter than the S-F distance to the bridging F atom (191.3 pm). The internuclear distance S…F5 (370.3 pm) is still much greater than the van der Waals distance. To a first approximation the structure of TS1 may also be described as a donor-acceptor complex, $F_2S \rightarrow F_2$. The intrinsic reaction coordinate has been calculated at the HF/3-21+G* level and it was observed that the formal outermost F atom of TS1 (F5) moves all the way round the formal SF₃ unit, finally to occupy an axial position in the stable trigonal-bipyramidal molecule SF₄. During this process this moving F atom always forms a triangle of varying shape with the neighboring fluorine (F2) and the S atom. The other F atom originating from the F_2 molecule (F2) finally occupies an equatorial position in SF₄. The natural atomic charges on fluorine in SF_4 are -0.60 for the axial and -0.48 for the equatorial positions; the calculated dipole moment of SF₄ is 0.97 D.

Sulfur chlorides: The optimized structure of SCl₂ (symmetry C_{2v} ; S–Cl, 204.5 pm; Cl-S-Cl, 102.8°) agrees well with the experimental gas-phase structure determined by microwave spectroscopy (S–Cl, 201.4 pm; Cl-S-Cl, 102.7°)^[26] but the internuclear distances are overestimated similarly to those found for SF₂ and SF₄. The calculated structure of SCl₄ (Figure 3) is also of C_{2v} symmetry. This molecule is interesting

Figure 3. Structures of SCl_4 (symmetry C_{2v}) and of the transition state **TS2** for the reaction of SCl_2 with Cl_2 (internuclear distances in pm).

in that the angles Cl_{ax} -S- Cl_{eq} (93.2°) exceed 90°, and consequently the angle Cl_{ax} -S- Cl_{ax} (169.7°) measured on the empty side of the molecule is *less* than 180°, whereas F_{ax} -S- F_{ax} is 197° in SF₄. The axial S–Cl bonds are 14% longer than the equatorial ones. The atomic charges were calculated by Mulliken's method only. The positive charge on the S atom of SCl₄ (+0.95) is only slightly smaller than the Mulliken value for SF₄ (+1.04). The chlorine atoms have quite different charges: -0.14 in the equatorial and -0.33 in the axial positions. In contrast, the Mulliken charges in the SCl₂ molecule are surprisingly small (S, +0.04; Cl, -0.02).

The reaction of SCl₂ with Cl₂ to form SCl₄ was found to be endothermic at all the levels of theory that we investigated. The energies and entropies of all related species are given in Table 4. The calculated reaction enthalpies $\Delta H_{298}^{\circ}(4)$ and

FULL PAPER

Table 4. Absolute energies (hartree) of SCl_2 , Cl_2 , SCl_4 and TS2 calculated by various methods, and zero-point energies (ZPE), thermal energies (TE), entropies and heat capacities based on the vibrational wavenumbers calculated at the MP2/6-311 + G* level.

	SCl ₂	Cl_2	SCl_4	TS2
G2(MP2) (0 K)	- 1317.184221	- 919.425731	-2236.608156	
CBS-4 (0 K)	-1317.203536	-919.441705	-2236.634535	
CCSD(T)/6 - 311 + G(2df)	-1317.149153	-919.402165	-2236.540535	-2236.474346
ZPE [kJ mol ⁻¹]	7.4	3.3	15.0	12.3
$ZPE + TE [kJmol^{-1}]$ at 298 K	17.4	10.0	33.7	30.5
S_{298}° [Jmol ⁻¹ K ⁻¹]	281.5	222.9	365.3	369.5
$C_p \left[J mol^{-1} K^{-1} \right]$	42.8	25.6	88.0	81.9

Gibbs free energy changes $\Delta G_{298}^{\circ}(4)$ (Table 5) show that the gas-phase reaction (4) is endothermic and that the negative reaction entropy shifts the equilibrium further to the left.

Table 5. Reaction enthalpies ΔH_{298}° (4) and Gibbs free energy changes ΔG_{298}° (4) calculated from the data in Table 4.

	ΔH_{298}° (4) [kJ mol ⁻¹]	ΔG_{298}° (4) [kJ mol ⁻¹]
CBS-4	27	70
G2(MP2)	4	46
CCSD(T)/6-311+G(2df)	32	74

The transition state for reaction (4) (TS2) (Figure 3) has an unusual structure which can be interpreted approximately as an ion-pair composed of SCl₃⁺ and Cl⁻. However, of the three S-Cl bonds only two are similar in length (200.4 and 205.2 pm); the third is much longer (246.3 pm), but surprisingly it is not the one which connects the SCl_3^+ ion to the formal chloride ion. The S-Cl-Cl unit is bent (at 132.6°) and the S-Cl bond of this bridge is practically perpendicular to the plane of the former SCl_2 molecule, as in the case of **TS1**. The torsion angle Cl5-Cl2-S-Cl4 (-25.2°) results in a contact distance of 384.5 pm between Cl4 and Cl5. The torsion angle Cl5-Cl2-S-Cl3 is -115.3° . Cl5 carries a charge of -0.41 while the bridging atom Cl2 has a positive charge of +0.39. The Cl – Cl bond is therefore highly polarized, and at 238.3 pm it is considerably longer than calculated for Cl_2 (202.5 pm). The S atom is slightly positively charged (+0.09), as is Cl3 (+0.07), while Cl4 carries a charge of -0.13. Thus the structure of **TS2** is rather different from that of TS1 but similar to the transition state of reaction (1). The intrinsic reaction coordinate connects TS2 smoothly with SCl₄ at one extremity and with the separate molecules SCl₂ and Cl₂ on the other. As in the case of SF₄, the atoms of the former Cl₂ molecule occupy one axial and one equatorial position in the final product molecule, SCl₄.

The energy of **TS2** at 0 K is 203 kJ mol⁻¹ above that of $SCl_2 + Cl_2$ and 171 kJ mol⁻¹ above that of SCl_4 at the CCSD(T)/6-311+G(2df) level of theory. The bond energy of Cl_2 at 0 K is 246 kJ mol⁻¹; that is, the formation of SCl_4 from SCl_2 and Cl_2 via **TS2** requires a much lower activation energy than the homolytic dissociation of Cl_2 . These data and the energy profile of reaction (4) (Figure 4) apply to the gas phase only. Since the dipole moment calculated for **TS2** (7.05 D) is much larger than those of SCl_2 (0.62 D) and SCl_4 (1.73 D) it can be assumed that the activation energy is substantially lower in media of high polarity. This explains why liquid SCl_2 reacts spontaneously with elemental chlorine at $-30^{\circ}C$ to form the salt-like solid SCl_4 . The gain in lattice energy makes this reaction exothermic.

Figure 4. Energy diagram for the reaction of SCl_2 with Cl_2 to form SCl_4 via the transition state **TS2** (relative energies in kJ mol⁻¹ at 298 K).

The calculated wavenumbers of SCl₄ (Table 6) may help to identify this species in, for instance, a matrix isolation experiment. The assignment in Table 6 is based on a comparison with the assignment of the infrared and Raman spectra of SF_4 .^[27]

Table 6. Calculated vibrational wavenumbers (cm⁻¹; unscaled) of SCl₄ (symmetry $C_{2\nu}$) and relative infrared intensities (in brackets); $\nu =$ stretching mode.

A_1	507 (21) v	B_1	491 (7) v
A_1	247 (1) v	\mathbf{B}_1	226 (0)
A_1	143 (1)	B_2	400 (100) v
A_1	93 (1)	\mathbf{B}_2	221 (1)
A_2	187 (0)		

On the basis of density functional calculations it had been claimed that SCl₄ has T_d symmetry and that a structure of C_{3v} symmetry is only slightly less stable.^[16] We have optimized the geometry of SCl₄ at the HF/6-311G* level with the symmetry restricted to either T_d or C_{3v} , and calculated the vibrational wavenumbers at the same level. Of the four fundamental vibrations of tetrahedral SCl₄ one had a negative eigenvalue (the triply degenerate bending mode). Similarly, of the six fundamentals of SCl₄(C_{3v}) one doubly degenerate bending mode had a negative eigenvalue. Clearly, these structures do not correspond to minima on the energy hypersurface.

Discussion

Homoleptic sulfuranes SX_4 are known with X = F, OR and R only (R = organic group).^[28] Their structures always exhibit the pseudo-trigonal-bipyramidal coordination geometry at

the S atom but the local symmetry may be lower than C_{2v} because of intermolecular interactions in the solid state. In particular, the two axial S-X bonds may differ slightly in length. With chlorine ligands, sulfuranes R₂SCl₂ and R(RO)SCl₂ are known. The classic example is bis(4-chlorophenyl)dichlorosulfurane **3**, in the solid state of which the Cl atoms are in axial positions but the S-Cl distances are 226 and 232 pm,^[29] in agreement with the axial S-Cl distance of 231.6 pm calculated for SCl₄ in this work. With halogens of lower electronegativity no sulfuranes are formed; instead, adducts of the R₂S \rightarrow X₂ type are obtained. For example, the

five-membered cyclic tetramethylene sulfide $(CH_2)_4S$ (thiolane) reacts with Br₂ to form a solid product **4** in which the three atoms S-Br-Br are aligned (at 178°) and the coordination geometry at the S atom is pyramidal.^[30]

This geometry, together with the bond lengths, indicates that the sulfide acts as a nucleophile donating electron density into

the antibonding σ_u LUMO of Br₂. The Br–Br distance (272.4 pm) is therefore much longer than in gaseous Br₂ (228 pm). This structure can serve as a model for the first stage of the asymmetric donor – acceptor interaction between the two species SX₂ and X₂ investigated in this work. Only if X is of sufficiently high electronegativity will the adduct be transformed into a sulfurane as in the case of SF₄. Analogous behavior has been observed for compounds of the R₂SeX₂ type (R=Me, Ph; X=halogen). With X=F, Cl, Br the geometry at the selenium atom is pseudo-trigonal-bipyramidal whereas for Me₂SeI₂ the donor – acceptor type of structure analogous to **4** is preferred, with Se-I-I = 174°.^[31]

The hypothetical tetramethylsulfurane Me₄S, according to a high-level ab initio MO calculation, is thermodynamically unstable with respect to Me₂S and Me₂ (ethane).^[32] The energy change during this decomposition has been calculated at the MP4SDG/TZ(2)P level of theory to be -350 kJ mol⁻¹. To stabilize homoleptic tetraorganosulfuranes R₄S, either the electronegativity of R has to be increased by inductive effects (thermodynamic stabilization) or decomposition of a thermodynamically unstable derivative must be prevented by introducing suitable chelating ligands (kinetic stabilization). An example of the first case is the tetrakis(pentafluorphenyl)sulfurane (C₆F₅)₄S, which is stable below 0°C, at which temperature it decomposes to R₂S and R₂.^[33] Cyclic bidentate ligands, as in bis(2,2'-biphenylylene)sulfuranes. Compound **5**

is kinetically stable at ambient temperatures, and according to an X-ray structural analysis it contains S–C bonds of length 192.6 pm(axial) and 181.3 pm (equatorial).^[34]

Sulfuranes $S(SR)_4$ have been proposed as intermediates for the interconversion of polysulfur compounds, for example, in the transformation of unstable homocycles such as S_7 , to a more stable ring size, as in S_8 [Eqs. (6), (7)].^[8]

However, semiempirical MO calculations by the SINDO1 method indicated that the reaction of H2S3 with H2S2 to form the tetramercaptosulfurane S(SH)₄ is endothermic by 299 kJ mol^{-1.[35]} This reaction served as a model reaction for Equation (6). Similarly, the insertion of H_2S into the central bond of either H_2S_2 or H_2S_4 to give the sulfuranes $H_2S(SH)_2$ and H₂S(SSH)₂, respectively, was found to be endothermic by approximately 210 kJ mol⁻¹ at the MP3/6-31G*//HF/4-31G* level of theory.^[36] Although these calculations need to be improved by a higher level of theory^[37] it is evident that the electronegativity of sulfur is too low to make tetrathiasulfuranes likely intermediates for the interconversion of polysulfur compounds, especially if the additional activation energy is taken into account. There is a clear dependence of the thermodynamic stability of homoleptic SX4 compounds on the electronegativity of X, as the data (Table 7) for the energy change for the formation of SX4 from SX2 and X2 demonstrate.

Table 7. Energy changes ($kJ mol^{-1}$ at 0 K) for the formation of SX_4 from SX_2 and X_2 calculated at different levels of theory).

	SF_4	SCl_4	S(SH) ₄	H_4S	Me ₄ S
Reference	– 450	+ 33	+200 to +300	+ 330	+ 350
	this work	this work	35, 36	9, 10	32

The high stability of SF_4 is due not only to the favorable electronegativity of fluorine but also to the unusually small bond energy of F_2 . In the case of SCl_4 the lack of stability of SCl_4 is partly attributable to the bond energy of Cl_2 being much higher than that of F_2 . On the basis of these observations one would expect that sulfuranes of the $S(NR_2)_4$ type might be sufficiently stable to be prepared, since the electronegativity of nitrogen on the Allen scale^[38] is slightly higher than that of chlorine, and the N–N single bond in the dissociation product tetraalkylhydrazine R_2N-NR_2 would be weak similarly to the bond in F_2 . So far, tetraamidosulfuranes are unknown.

The adduct **2** and the transition states **TS1** and **TS2** are remarkable in that a substantial amount of electron density has been transferred from the *positively* charged S atom in SX_2 to a neutral X_2 molecule to generate each of these species. For X = F this charge transfer does not change the energy of the system very much (<10 kJ mol⁻¹) but for X = Cl the

FULL PAPER

charge transfer is considerably endothermic. Polar reaction mechanisms may be more common in sulfur chemistry than has been expected. The interconversion of polysulfur compounds such as S_7 also probably proceeds through polar intermediates or, in other words, by nucleophilic attack by one molecule on a neighboring one resulting in zwitterionic transition states. This problem will be discussed in a separate publication.

Gaseous adducts of the molecules F_2 and Cl_2 with donors such as $H_2S^{[39]}$ and $Me_3N^{[40]}$ have been studied previously. These adducts also have C_s symmetry. The species $H_2S \rightarrow F_2$ and $H_2S \rightarrow Cl_2$ have been observed as prereactive complexes, by rotational spectroscopy using a fast-mixing nozzle together with a microwave spectrometer. The $S \cdots F$ and $S \cdots Cl$ distances obtained were 320(1) and 325 pm, indicating a very weak interaction in both cases. The structure of the complex $Me_3N \rightarrow F_2$ was determined by ab initio MO calculations at the $MP2/6-31G^*$ level. This structure is characterized by a somewhat smaller degree of charge transfer than our adduct 2 and than our transition state **TS1**; this can be concluded from the internuclear distances in the F_2 units (142 pm in the free F_2 molecule, 175 pm in $Me_3N \rightarrow F_2$, and 182 pm in 2 and **TS1**).

The slight differences in reaction enthalpies that resulted from the different methods used in this work were most probably related to the different geometries used in the energy calculations, as mentioned in the Computational Methods section. To demonstrate the differences one may compare the experimental bond distances of SF_4 with those calculated at various levels of theory (Table 8). The best

Table 8. Bond lengths of SF_4 .

	Exp.	CBS-4(HF/3-21G*)	G2(MP2/6-31G*)	MP2/6-311+G*
SF _{eq} [pm]	154.5	155.0	158.5	157.9
SF _{ax} [pm]	164.6	161.7	166.3	169.0

agreement with the experimental geometry is obtained for the smallest basis set, and neglecting the electron correlation. The same is true for SF₂ and SCl₂. Nevertheless, we believe that the results obtained at the CCSD(T)/6-311+G(2df)//MP2/6-311+G* level are the most reliable, since it is known that the energy of hypervalent molecules drops considerably if diffuse and polarization functions are included in the basis set and if the electron correlation is taken into account. In particular, the transition states, which include some large internuclear distances, require diffuse functions. The main goal of this work is to elucidate the reaction mechanisms and to compare the activation energies with those for a homolytic dissociation pathway. These results are not influenced by the slight differences in enthalpy values obtained by different methods.

Conclusion

We have shown that the reactions of the sulfur dihalides SX_2 with X_2 (X = F, Cl) to give the pseudo-trigonal-bipyramidal tetrahalides SX_4 proceed via asymmetric, almost ionic, transition states. In the case of X = F a very weakly bonded

donor-acceptor complex $F_2S \rightarrow F_2$ (2) is the first reaction product and is transformed exothermically into SF_4 via a transition state of which the structure and energy are almost identical to those of 2. In contrast, the structure of the transition state for the endothermic reaction of SCl_2 with Cl_2 can be approximated by the formula $[SCl_3^+]Cl^-$. For the homoleptic sulfuranes SX_4 there is a definite dependence of the thermodynamic stability with respect to the dissociation products SX_2 and X_2 on the electronegativity of X (X = F, Cl, SR, Me, H): the lower the electronegativity of X, the more exothermic is the dissociation reaction. In this sense, tetrathiasulfuranes $S(SR)_4$ are highly endothermic and are therefore not expected to play a role as reaction intermediates in sulfur chemistry.

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft, the Verband der Chemischen Industrie and the Konrad-Zuse-Zentrum für Informationstechnik Berlin. K.M. and I.A.T. thank the staff and administration of the Frederick Biomedical Supercomputing Center for their support.^[41]

- Ullmann's Encyclopedia of Industrial Chemistry, Vol. A11, VCH, Weinheim, 1988, p. 337.
- [2] A. E. Reed, F. Weinhold, J. Am. Chem. Soc. 1986, 108, 3586; A. E. Reed, P. von R. Schleyer, J. Am. Chem. Soc. 1990, 112, 1434; D. L. Cooper, T. P. Cunningham, J. Gerratt, P. B. Karadakov, M. Raimondi, J. Am. Chem. Soc. 1994, 116, 4414.
- [3] E. Magnusson, J. Am. Chem. Soc. 1990, 112, 7940.
- [4] Some of the nonbonding MOs are involved in a weak hyperconjugative interaction with the lowest unoccupied MOs on the S atom. This interaction transforms some of the formerly nonbonding MOs into slightly bonding MOs. To a first approximation this effect can be neglected.
- [5] Under particularly mild conditions additional compounds such as S_2F_2 and S_2F_4 are formed; the latter originates from dimerization of SF_2 : A. Haas, H. Willner, Z. Anorg. Allg. Chem. **1980**, 462, 57.
- [6] Ullmann's Encyclopedia of Industrial Chemistry, Vol. A25, VCH, Weinheim, 1994, p. 623.
- M. Feuerhahn, R. Minkwitz, Z. Anorg. Allg. Chem. 1976, 426, 247; R. Kniep, L. Korte, D. Mootz, Z. Naturforsch. B 1984, 39, 305; R. Steudel, D. Jensen, B. Plinke, Z. Naturforsch. B 1987, 42, 163.
- [8] R. Steudel, Top. Curr. Chem. 1982, 102, 149.
- [9] Y. Yoshioka, J. D.Goddard, H. F. Schaefer III, J. Chem. Phys. 1981, 74, 1855; see also C. J. Marsden, B. A. Smart, Aust. J. Chem. 1994, 47, 1431.
- [10] C. S. Ewig, J. R. Van Wazer, J. Am. Chem. Soc. 1989, 111, 1552.
- [11] J. Moc, A. E. Dorigo, K. Morokuma, *Chem. Phys. Lett.* **1993**, 204, 65.
- [12] I. Barin, Thermochemical Data of Pure Substances, Parts I and II, VCH, Weinheim, 1993.
- [13] E. R. Fisher, B. L. Kickel, P. B. Armentrout, J. Chem. Phys. 1992, 97, 4859; K. K. Ikura, J. Chem. Phys. 1995, 102, 5357; Y.-S. Cheung, Y.-J. Chen, C. Y. Ng, S.-W. Chiu, W.-K. Li, J. Am. Chem. Soc. 1995, 117, 9725; C. W. Bauschlicher, A. Ricca, J. Phys. Chem. A 1998, 102, 4722.
- [14] W. M. Tolles, W. D. Gwinn, J. Chem. Phys. 1962, 36, 1119.
- [15] R. M. Minyaeva, I. A. Yudilevich, J. Struct. Chem. 1992, 33, 359.
- [16] G. L. Gutsev, J. Phys. Chem. 1992, 96, 10242.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.

Gonzalez, J. A. Pople, GAUSSIAN 94, Revision E.1, Gaussian, Inc., Pittsburgh (PA), **1995**.

- [18] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
- [19] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO 4.0, Theoretical Chemistry Institute, University of Wisconsin, Madison (WI), **1996**.
- [20] For a detailed description of the computational procedures see: W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, *Ab Initio Molecular Orbital Theory*, Wiley, New York, **1986**.
- [21] K. Fukui, Acc. Chem. Res. 1981, 14, 363; C. Gonzales, H. B. Schlegel, J. Phys. Chem. 1989, 90, 2154.
- [22] L. A. Curtiss, K. Raghavachari, J. A. Pople, J. Chem. Phys. 1993, 98, 1293.
- [23] G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081; G. A. Petersson, T. Tensfeldt, J. A. Montgomery, J. Chem. Phys. 1991, 94, 6091; J. A. Montgomery, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1994, 101, 5900; J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 1996, 104, 2598.
- [24] S. F Boys, F. Bernardi, *Mol. Phys.* **1970**, *19*, 553. For a recent review of the current status of the discussion on the counterpoise correction see: J. H. van Lenthe, J. G. C. M. van Duijneveldt-van de Rijdt, F. B. van Duijneveldt, in *Advances in Chemical Physics, Vol. LXIX: Ab-Initio Methods in Quantum Chemistry II* (Ed.: K. P. Lawley), Wiley, New York, **1987**; F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, J. H. van Lenthe, *Chem. Rev.* **1994**, *94*, 1873.
- [25] Y. Endo, S. Saito, E. Hirota, J. Mol. Spectrosc. 1979, 77, 222.
- [26] R. W. Davis, M. C. L. Gerry, J. Mol. Spectrosc. 1977, 65, 455.
- [27] K. O. Christe, W. Sawodny, J. Chem. Phys. 1970, 52, 6320.

- [28] For a review on oxysulfuranes (RO)₄S see: J. C. Martin, E. F. Perozzi, *Science* 1976, 191, 154.
- [29] N. C. Baenziger, R. E. Buckles, R. J. Maner, T. D. Simpson, J. Am. Chem. Soc. 1969, 91, 5749.
- [30] G. Allegra, G. E. Wilson, E. Benedetti, C. Pedone, R. Albert, J. Am. Chem. Soc. 1979, 92, 4002.
- [31] N. Kaltsoyannis, J. Chem. Soc. Dalton Trans. 1997, 4759; S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, S. Sarwar, J. Chem. Soc. Dalton Trans. 1997, 1031.
- [32] C. J. Marsden, B. A. Smart, Organometallics 1995, 14, 5399.
- [33] W. A. Sheppard, J. Am. Chem. Soc. 1971, 93, 5597.
- [34] S. Ogawa, Y. Matsunaga, S. Sato, I. Iida, N. Furukawa, J. Chem. Soc. Chem. Commun. 1992, 1141.
- [35] K. Jug, R. Iffert, J. Mol. Struct. (Theochem) 1989, 186, 347.
- [36] R. S. Laitinen, T. A. Pakkanen, R. Steudel, J. Am. Chem. Soc. 1987, 109, 710.
- [37] These calculations are in progress and will be reported in a separate publication.
- [38] L. C. Allen, J. Am. Chem. Soc. 1989, 111, 9003; R. Steudel, Chemie der Nichtmetalle, 2nd ed., W. de Gruyter, Berlin, 1998, p. 168.
- [39] G. Cotti, C. M. Evans, J. H. Holloway, A. C.Legon, *Chem. Phys. Lett.* 1997, 264, 513; H. I. Bloemink, S. J.Dolling, K. Hinds, A. C. Legon, *J. Chem. Soc. Faraday Trans.* 1995, 91, 2059.
- [40] H. Tachikawa, E. Komatsu, Inorg. Chim. Acta 1998, 281, 85.
- [41] The contents of this publication do not necessarily reflect the views or policies of the U.S. Department of Health and Human Services.

Received: October 7, 1998 Revised version: January 25, 1999 [F1380]